Advancing Emotion Theory with Multivariate Pattern Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advancing emotion theory with multivariate pattern classification.

Characterizing how activity in the central and autonomic nervous systems corresponds to distinct emotional states is one of the central goals of affective neuroscience. Despite the ease with which individuals label their own experiences, identifying specific autonomic and neural markers of emotions remains a challenge. Here we explore how multivariate pattern classification approaches offer an ...

متن کامل

Advancing neuroimaging research with predictive multivariate pattern analysis

Nobel prize winner Eric Kandel wrote: ”The task of neural science is to explain behavior in terms of the activities of the brain.”1 Unfortunately, the currently prevalent data analysis strategies do not aim at exploring behavior in terms of neural activity per se. Instead, the majority of methods primarily explore the data by performing mass-univariate hypothesis tests, searching for statistica...

متن کامل

Common Spatial Pattern Using Multivariate EMD for EEG Classification

Brain-computer interface (BCI) is a system to translate humans thoughts into commands. For electroencephalography (EEG) based BCI, motor imagery is considered as one of the most effective ways. This paper presents a method for classifying EEG during motor-imagery by the combination of well-known common spatial pattern (CSP) with so-called multivariate empirical mode decomposition (MEMD), which ...

متن کامل

Local Position Classification for Pattern Discovery in Multivariate Sequential Data

Traditional sequential data analysis largely depends on the magnitude of the data with the geometric features of individual data points sometimes being regarded as noise to such analysis. To explore whether these geometric features alone carry some useful information for a better understanding of hidden facts contained in the sequential data, a new method called local position classification (L...

متن کامل

Advancing Connectionist Temporal Classification With Attention Modeling

In this study, we propose advancing all-neural speech recognition by directly incorporating attention modeling within the Connectionist Temporal Classification (CTC) framework. In particular, we derive new context vectors using time convolution features to model attention as part of the CTC network. To further improve attention modeling, we utilize content information extracted from a network r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Emotion Review

سال: 2014

ISSN: 1754-0739,1754-0747

DOI: 10.1177/1754073913512519